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MATHEMATICAL MODEL OF AEROELASTIC VIBRATIONS

OF CASCADES OF AXIAL TURBOMACHINE BLADES, CAUSED

BY CIRCUMFERENTIAL NONUNIFORMITY OF THE FLOW

UDC 534.1V. B. Kurzin

A system of linear differential equations with time-dependent coefficients, which describes aeroelastic
vibrations of blade cascades in a nonuniform flow, is derived. With the use of the model of an
ideal incompressible fluid and the hypothesis of cylindrical sections, determination of aerodynamic
forces acting on the blades is reduced to solving problems by methods fairly well developed in the
theory of cascades in unsteady flow. The possibility of the emergence of a parametric resonance is
analyzed. It is demonstrated that circumferential nonuniformity of the flow in the turbomachine duct
can substantially reduce the critical velocity of the cascade flutter.

Key words: cascade of blades, aeroelastic vibrations, flutter, flow nonuniformity, parametric
resonance.

Introduction. An inherent feature of the velocity field in the duct of axial turbomachines is its circumfer-
ential nonuniformity. It appears because the flow is perturbed by various turbomachine elements, for instance, rotor
wheels or guide and straightener blades. When the working wheel rotates in a circumferentially nonuniform flow, its
blades experience the action of periodic unsteady forces exciting blade vibrations. If the working medium is a gas,
then the unsteady aerodynamic forces acting on the wheel blades are sufficiently small, as compared with elastic
and inertial forces induced in the case of blade vibrations. Therefore, the general problem of aeroelastic vibrations
of a blade cascade decomposes in the linear approximation into three subproblems: 1) inherent vibrations of the
cascade of blades in vacuum; 2) determining the unsteady aerodynamic characteristics of the cascade corresponding
to its own modes in vacuum; 3) vibrations of the cascade with allowance for aerodynamic interaction of the blades.

The first subproblem has been treated in much detail [1, 2]. In studying the problems of aeroelastic vibrations
of cascades in a nonuniform flow, the second subproblem has been adequately solved only for a plane model of an
unsteady flow through the cascade [3–6].

Many publications deal with solving the third subproblem within the model of aeroelastic vibrations of
cascades, which are described by linear differential equations with constant coefficients [3, 4, 7–9]. In reality, the
coefficients of the aerodynamic forces in the corresponding differential equations are time-dependent because of
circumferential nonuniformity of the flow in the turbomachine duct. The presence of such forces can lead to the
emergence of a parametric resonance; the probability of this resonance in the flow through cascades was analyzed
previously in [10–12]. Conditions responsible for the emergence of this phenomenon, however, were actually not
considered in those papers.

A system of differential equations with time-dependent coefficients that describe aeroelastic vibrations of
axial turbomachine cascades, which are induced by circumferential nonuniformity of the flow, is derived in the
present work. A method of determining the unsteady aerodynamic forces acting on the blades is developed, and
the possibility of the emergence of a parametric resonance is analyzed.
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Fig. 1. Straight cascade of blades.

1. Formulation of the Problem. Let us consider the vibrations of an axial turbomachine cascade rotating
in a incompressible fluid flow with a nonuniform circular velocity. Small geometric irregularity of the cascade, caused
by technological inaccuracy of blade manufacturing and wheel assembling, is admitted in the general case, because
the associated inhomogeneity of dynamic characteristics of the blades exerts a significant effect on their aeroelastic
vibrations [7–9]. We assume that the effect of this inhomogeneity on the unsteady component of aerodynamic forces
can be neglected. Therefore, we assume that the eigenfrequencies and eigenshape of blade vibrations in vacuum
satisfy the condition

|ωsn − ωs0| � ω00, ψsn = ψs

(n = 0, 1, 2, . . . , N0 − 1, s = 1, 2, 3, . . .),
(1.1)

where ωsn and ψs are the eigenfrequency and the eigenshape of the nth blade, which correspond to the sth mode
of vibrations and are assumed to be known.

As the friction forces of the gas do not exert any significant effect on blade vibrations, the unsteady aerody-
namic forces acting on the blades are sought within the framework of the ideal fluid model, similar to the commonly
used procedure in problems of aeroelasticity of the airfoils and turbomachine cascades. In the case considered, we
determine these forces on the basis of the hypothesis of cylindrical sections, which implies that the radial fluid flow
in the axial turbomachine duct has an insignificant effect on the integral characteristics of aerodynamic interaction
of cascade blades with the flow. According to this hypothesis, determining these characteristics reduces to solving
problems of the flow through straight cascades, which are unfolded patterns of the cylindrical sections of the axial
cascade.

Let us consider the flow through a straight cascade of blades, which is an unfolded pattern of the cylindrical
section of radius z of the axial turbomachine cascade rotating with an angular velocity Ω in a circumferentially
nonuniform fluid flow (see Fig. 1). In a motionless coordinate system (x0, y0), in which the cascade considered
moves in the direction along the y0 axis with a velocity u = Ωz, the vector of the incoming flow velocity can be
presented as

V∞(x0, y0) = V0 + ε1V1(x0, y0), V0 = const,

max |V1| = |V0|, ε1 � 1, V1(x0, y0) = V1(x0, y0 +H),
(1.2)

where V1 is the vector-function determining the nonuniformity of the incoming flow, H = Nh is the period of this
function, h is the cascade step, and N is a natural number to which the number of blades in the cascade N0 is
multiple. Let us present the periodic vector-function V1(x0, y0) in the form of the Fourier series
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V1(x0, y0) =
1
2

a0 +
∞∑

r=1

[
ar(x0) cos

(2πry0
H

)
+ br(x0) sin

(2πry0
H

)]
(1.3)

and introduce a moving coordinate system (x, y) rigorously fitted to the cascade:

x = x0, y = y0 − ut. (1.4)

Taking into account Eqs. (1.2)–(1.4), we can simplify the problem of the fluid flow through the cascade by
presenting the relative free-stream velocity in the complex form

W∞(x, y, t) = W0 + W1(x, y, t); (1.5)

W1(x, y, t) = ε1|W0|
∞∑

r=1

[W1r exp (jωrt) + W̄1r exp (−jωrt)], (1.6)

where

W1r =
1

2|W0| [ar(x) − jbr(x)] exp
(
j

2πry
H

)
,

W̄1r is the function that is complex conjugate to W1r, ωr = ωr, ω = 2πu/H , W0 = V0 − u = const, and j is the
imaginary time unit.

It follows from Eqs. (1.5) and (1.6) that the relative velocity of the flow incoming onto the cascade contains
an unsteady component periodic in time. Therefore, the flow perturbation arising as a result of flow interaction
with the cascade also contains an unsteady component in the relative coordinate system. Under the action of
aerodynamic forces generated by this perturbation, the cascade blades perform forced vibrations, which, in turn,
generate additional flow perturbations depending on the character of blade vibrations. The dependence of the
coefficients of the corresponding aerodynamic forces in the generalized coordinates, which determine the law of
blade vibrations, is periodic in time. Thus, when the cascade is exposed to a flow whose velocity contains a periodic
component, the cascade blades perform not only forced, but also parametric vibrations. The task is to determine
the unsteady aerodynamic forces acting on the cascade blades, which are induced by periodic nonuniformity of the
incoming flow, and to evaluate the influence of this nonuniformity on the character of blade vibrations, in particular,
on their stability.

2. Determining the Perturbed Component of Flow Velocity. The relative flow velocity in the
vicinity of the cascade can be presented as a sum of four terms:

W (x, y, t) = W∞(x, y, t) + w0(x, y) + w1(x, y, t) + w(x, y, t).

Here, W∞ is the function defined in the form (1.5), (1.6), w0 is the steady component of the flow velocity pertur-
bation, which is assumed to be known, and w1 and w are the unsteady components of the perturbed velocity of the
fluid, which are induced by interaction of the cascade of motionless blades with the nonuniform flow and by blade
vibrations, respectively.

By virtue of the assumptions made in formulating the problem, we confine ourselves to determining the
unsteady components of the fluid flow velocity perturbation in the linear approximation and within the framework
of the model of an ideal incompressible fluid. Note that the order of magnitude of the corresponding components
of this perturbation and their time evolution are determined by the boundary conditions of non-penetration of the
incoming flow through the cascade blades. For convenience of transformations, all linear sizes in what follows are
assumed to be normalized to the mean chord of the cascade blades b.

Following the principle of superposition and taking into account Eq. (1.6), we present the velocity potential
of the unsteady component of the fluid flow, which is induced by nonuniformity of the flow incoming onto the
motionless blades, in the following form:

ϕ1 = ε1|W0|b
∞∑

r=1

[ϕ1r(x, y) exp (jωrt) + ϕ̄1r(x, y) exp (−jωrt)]. (2.1)

Here, ϕ1r is the amplitude function of the velocity potential of fluid vibrations with a frequency ωr and ϕ̄1r is the
function that is complex conjugate to the function ϕ1r. According to Eq. (1.6), the function ϕ1r should satisfy the
condition

1028



∂ϕ1r(x, y + nh)
∂νn

= −W1rν0(x, y) exp (jμrn), (x, y) ∈ L0

(n = 0, 1, 2, . . . , N0 − 1),

where νn is the direction of the normal to the blade contour Ln.
Therefore, the conditions for the neighboring blades differ only by a constant phase shift μr = 2πr/N . This

circumstance allows us to apply well-developed methods in the cascade theory for unsteady flow [3–6] to determine
the sought function ϕ1r. Thus, this function possesses a property of generalized periodicity of the form

ϕ1r(x, y + nh) = ϕ1r(x, y) exp (jμrn), (x, y) ∈ L0. (2.2)

According to Eq. (2.1), the function w1, which is determined via ϕ1, has the form

w1(x, y, t) = ε1|W0|
∞∑

r=1

[w1r(x, y) exp (jωrt) + w̄1r(x, y) exp (−jωrt)]. (2.3)

To determine flow perturbations induced by blade vibrations, we present the general law of their vibrations,
with allowance for Eq. (1.1), in the complex form as

zn =
∞∑

r=1

N1∑

s=1

xnrsψs(x, y) exp (jωrt) (n = 1, 2, . . . , N0), (2.4)

where xnrs is the dimensionless value of the generalized coordinate determining the level of vibrations of the nth
blade with respect to the rth harmonic and the sth mode; N1 is the number of the degrees of freedom of blade
vibrations taken into account. In this case, the potential of the perturbed component of the fluid velocity can be
presented in the following form with allowance for Eq. (2.4):

ϕ(x, y) = |W0|b
∞∑

r=1

N1∑

s=1

N0−1∑

n=0

xnrsϕnrs(x, y) exp (jωrt). (2.5)

Here, ϕnrs is the dimensionless value of the amplitude function of the unsteady component of the velocity potential,
which arises due to vibrations of the nth blade with respect to the rth harmonic and the sth mode with a unit
amplitude. The function ϕnrs is determined by solving the boundary-value problem with the blade contours
subjected to conditions of the form

∂ϕnrs

∂νn
=

[
jkrψs(x, y) +

∂

∂σ

( |W0 + w0|
|W0| ψs(x, y)

)]
, (x, y) ∈ Ln,

∂ϕmrs

∂νm
= 0, (x, y) ∈ Lm, m �= n,

(2.6)

where kr = ωrb/|W0|. It should be noted that it is rather difficult to solve problems with the boundary condition
in the form (2.6). Let us demonstrate that determining the sought functions ϕnrs can be reduced to solving simpler
problems of the fluid perturbation induced by simultaneous vibrations of the cascade of blades with identical
amplitudes and identical shifts of the phases of vibrations of the neighboring blades. For this purpose, we introduce
the functions ϕ̃lrs possessing the property of generalized periodicity

ϕ̃lrs(x, y +mh) = ϕ̃lrs(x, y) exp
(
j

2πml
N0

)

(m = 1, 2, . . . , N0 − 1, l = 1, 2, . . . , N0 − 1),

which are the solutions of the corresponding boundary-value problems under the condition

∂ϕ̃lrs(x, y +mh)
∂νm

=
[
jkrψs(x, y) +

∂

∂σ

( |W0 + w0|
|W0| ψs(x, y)

)]
exp

(
j

2πml
N0

)
,

(x, y) ∈ L0 (m = 0, 1, 2, . . . , N0 − 1).
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Then, the functions ϕnrs can be presented as

ϕnrs =
1
N0

N0−1∑

l=0

exp
(
− j

2πnl
N0

)
ϕ̃lrs,

because the expressions for their derivatives along the normal to the blade contours

∂ϕnrs

∂νm
=

1
N0

N0−1∑

l=0

exp
(
− j

2πnl
N0

)∂ϕ̃lrs

∂νm
,

(x, y) ∈ L0 (m = 0, 1, 2, . . . , N0 − 1)

are equivalent to the non-penetration conditions (2.6).
With allowance for Eq. (2.5), the perturbed velocity component induced by blade vibrations can be presented

as

w(x, y, t) = |W0|
N0−1∑

n=0

∞∑

r=1

N1∑

s=1

xnrswnrs(x, y) exp (jωrt). (2.7)

3. Determining the Unsteady Component of Aerodynamic Forces. To determine the unsteady
aerodynamic forces acting on the cascade blades, it is necessary to know the unsteady component of static pressure
of the fluid on the blade surfaces. Within the framework of the hypothesis of cylindrical sections, the static pressure
on the blade surfaces (x, y) ∈ Ln is obtained from the Lamb–Gromeka equation in the form

p0 = −ρ
(∂ϕ0

∂t
+ W0(W1 + w1) + W0w + (W1 + w1)w +

1
2

(W1 + w1)2 +
1
2

w2
)
,

where ρ is the fluid density. The component of this pressure equal to

p1(x, y, z) = −ρ
(∂ϕ1

∂t
+ W0(W1 + w1) +

1
2

(W1 + w1)2
)

(3.1)

is independent of blade vibrations and determines the aerodynamic forces per unit length of the blade in the
cylindrical section of the cascade of radius z, which excite forced vibrations of the blades. According to Eqs. (1.6)
and (2.3), the last term in the right side of Eq. (3.1) is a quantity of the second order of smallness; hence, this term
is neglected in further considerations.

The expression for static pressure caused by blade vibrations has the form

p(x, y, z) = −ρ
(∂ϕ
∂t

+ W0w + (W1 + w1)w +
1
2

w2
)
. (3.2)

It will be demonstrated below that the quantity w has a higher order of smallness than W1 in the regimes considered;
therefore, the last term in the right side of Eq. (3.2) can also be neglected.

The second term of Eq. (3.2) is the product of two complex functions. The real process is described only
by their real parts. Therefore, to determine the aerodynamic forces acting on the blades, we have to pass to the
real form of their expressions. It also seems reasonable to present the generalized coordinates that describe steady
vibrations of the blades in the real form as well:

ynrs = Re [xnrs exp (jωrt)] = αnrs cos (ωrt+ βnrs). (3.3)

Here, αnrs = |xnrs| and βnrs = arctan [Im (xnrs)/Re (xnrs)] are the amplitudes and phases of vibrations. It should
be noted that Im [xnrs exp (jωrt)] = −ẏnrs/ωr.

Taking into account Eqs. (2.1)–(2.3) and (3.1), we can present the real parts of the generalized aerodynamic
forces exciting forced vibrations of the nth blade in the cascade in the vector form:

Q0n = −ε1qb2Fn,

(3.4)

Fn =
∞∑

r=1

[
Re (F0r ejμrn) cos (ωrt) − Im (F0r ejμrn) sin (ωrt)

]
.

Here, q = ρW 2
0 /2 is the dynamic pressure of the incoming flow and F0r is the vector whose components f0r

s

determine (in the complex form) the aerodynamic forces exciting vibrations of the initial blade (n = 0) with the
frequencies ωr and sth modes:
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f0r
s = 2

Rend∫

R0

∮

L0(z)

(
jkrϕ1r +

W0 + w0

|W0| (W1r + w1r)
)
ψs dσ dz

(R0 and Rend are the radii of the cylindrical sections of the blade normalized to b and determining the initial and
final points of the blades).

The generalized aerodynamic forces arising on the nth blade because of cascade vibrations and exciting blade
vibrations of the sth mode are determined in the real form with allowance for Eq. (3.2) by the formula

Qns = −ρb2
N1∑

s=1

Rend∫

R0

∫

Ln(z)

[
Re

(∂ϕ
∂t

+ W0w
)

+ ε1 Re (W1 + w1)Re w
]
ψs dσ dz. (3.5)

Substituting Eqs. (1.6), (2.3), (2.5), (2.7) into Eq. (3.5), we obtain an expression, which can be presented in the
matrix form as

Qn = −qb2
N0−1∑

m=0

∞∑

r=1

[(
AnmrYmr +

1
ωr

BnmrẎmr

)
+ ε1

N2∑

l=1

(
Cnmrl(t)Ymr +

1
ωr

Dnmrl(t)Ẏmr

)]
(3.6)

(Qn and Ymr are the vectors with the components qn
s = Qns and ymr

u = ymru). The elements of the matrices of
Eq. (3.6) with the appropriate notation are determined as follows:

anmr
su = 2

Rend∫

R0

∮

Ln(z)

Re (jkrϕmur + wmur)ψs dσ dz,

bnmr
su = 2

Rend∫

R0

∮

Ln(z)

Im (jkrϕmur + wmur)ψs dσ dz,

cnml
su = 2

Rend∫

R0

∮

Ln(z)

Wl(t) Re (wmur)ψs dσ dz,

dnml
su = 2

Rend∫

R0

∮

Ln(z)

Wl(t) Im (wmur)ψs dσ dz.

Here, Wl = 2 Re [(W1l + w1l) exp (jωlt)].
4. Differential Equations of Blade Vibrations Caused by Periodic Nonuniformity of the In-

coming Flow. Within the framework of the considered model of aerodynamic interaction between the cascade and
the fluid, we write the system of differential equations of blade vibrations. In accordance with [13] and Eqs. (3.4)
and (3.6), this system can be presented as

diag (Ms)Ÿn + diag (ω2
nsMs)Yn − qb

N0−1∑

m=0

∞∑

r=1

[(
AnmrYmr +

1
ωr

BnmrẎmr

)

+ ε1

N2∑

l=1

(
Cnmrl(t)Ymr +

1
ωr

Dnmrl(t)Ẏmr

)]
= ε1qbFn (4.1)

(n = 0, 1, 2, . . . , N0 − 1),

where Yn =
∞∑

r=1

Ynr, Ms is the generalized mass corresponding to the sth mode of vibrations, and ωns is the

eigenfrequency of s-mode vibrations of the nth blade in vacuum. The presence of terms with time-dependent
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coefficients in this system shows that a parametric resonance can arise (vibrations become unstable owing to a
certain combination of parameters). As was stated in [14], a necessary condition for the parametric resonance
emergence is satisfaction of one of the following relations:

ω0s = n1ωr(1 + δ)/2, |δ| � δn1s (n1 = 1, 2, 3, . . .) (4.2)

(ω0s is the eigenfrequency of s-mode vibrations of the cascade of blades in the flow; δn1s are small quantities whose
values determine the boundaries of the domain of stability of parametric vibrations).

5. Forced Vibrations of the Cascade. The forced vibrations of the cascade, which are induced by
free-stream nonuniformity, are described by a particular solution of the inhomogeneous system (4.1). If condition
(4.2) in this system is not satisfied, then the terms in the right side containing time-dependent coefficients can be
neglected. Moreover, as the aerodynamic forces are small as compared with elastic and inertial forces acting on the
blades in the gas flow, we can introduce a small parameter ε0 = qb/(Mω2

0s), where M is the blade mass. Then,
system (4.1) transforms to

Ÿn + diag (ω2
ns)Yn = ε0ω

2
0s diag

( M
Ms

)[ N0−1∑

m=0

∞∑

r=1

(
AnmrYmr +

1
ωr

BnmrẎmr

)
+ ε1Fn

]

(n = 0, 1, 2, . . . , N0 − 1).
(5.1)

Substituting Eqs. (3.3) and (3.4) into Eq. (5.1) and equating separately the coefficients at sin (ωrt) and cos (ωrt)
in the left and right sides of the corresponding equalities, we obtain a system of matrix equations for each time
harmonic:

diag
(
1 − ω2

ns

ω2
r

)
Y ′

nr = −ε0
r2

diag
( M
Ms

)[ N0−1∑

m=0

(AnmrY
′

mr +BnmrY
′′

mr) + ε1 Re (F0r ejμrn)
]
,

diag
(
1 − ω2

ns

ω2
r

)
Y ′′

nr = −ε0
r2

diag
( M
Ms

)[ N0−1∑

m=0

(AnmrY
′′

mr −BnmrY
′

mr) + ε1 Im (F0r ejμrn)
] (5.2)

(n = 0, 1, 2, . . . , N0 − 1).

Here, Y ′
nr and Y ′′

nr are the vectors whose components are the values of y′nrs = αnrs cosβnrs and y′′nrs =
−αnrs sinβnrs, respectively.

6. Parametric Vibrations of the Cascade of Blades. The parametric vibrations of the cascade,
which are induced by free-stream nonuniformity, are described by a homogeneous system of differential equations
corresponding to Eq. (4.1). Following [14], the solution of this system is sought in the form

Yn = eht
[1
2

Y ′
n0 +

∞∑

r=1

(Y ′
nr cos (rωt) + Y ′′

nr sin (rωt))
]
,

where h is the characteristic index of the solution and Y ′
rn and Y ′′

rn are the vectors similar to the vectors in Eq. (5.2).
For conservative systems, we have Re (h) > 0 under condition (4.2), i.e., vibrations become unstable. This

condition, however, is insufficient for the loss of stability in systems with decaying processes, which is the case in the
system considered owing to aerodynamic damping. The boundary of the region of stability of parametric vibrations
is determined from the condition of balance between the energy of parametric excitation of vibrations and the energy
spent on overcoming aerodynamic damping. In particular, if the free-stream nonuniformity in operation regimes
of the cascade is low, then the probability of the parametric resonance emergence is also low, because the time-
dependent coefficients of system (4.1) are small with respect to the coefficients responsible for aerodynamic damping.
In regimes where the velocity of the flow through the cascade is close to the critical velocity of the classical flutter
W∗, which is determined in a uniform incoming flow, aerodynamic damping tends to zero. Therefore, in a certain
vicinity of the mean velocity of the nonuniform incoming flow W01 = W∗ −ΔW , where aerodynamic damping has
still sufficiently low intensity, condition (4.2) can turn out to be sufficient for the emergence of instability of cascade
vibrations.
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It should be noted that, if this regime corresponds to the resonance region, i.e.,

|1 − ω2
0s/ω

2
r | < ε0, ωr = ωr, (6.1)

then the amplitudes of forced vibrations of the blades are sufficiently high. In this case, there is no need to study
their vibrations in more detail, because the operation of the corresponding structure in these regimes is inadmissible.
Therefore, the parametric resonance phenomenon described by condition (4.2) at even values of n1 can be eliminated
from considerations. If condition (6.1) is not satisfied, Eq. (5.2) yields the estimate αnrs = O(ε0ε1), which proves
the statement given in Sec. 3.

It is known that the most dangerous region of instability of parametric vibrations is located in the vicinity
of the values

ωr = 2ω0s. (6.2)

Following [14], in determining the boundaries of this region in the case of small values of the time-dependent
coefficients, we can present the sought solution in the first approximation in the form

Yn = Y ′
n1 cos (ωt/2) + Y ′′

n1 sin (ωt/2). (6.3)

Substituting Eq. (6.2) with allowance for Eq. (4.2) to the homogeneous system of differential equations
corresponding to Eq. (4.1) and equating the coefficients at sin (ωt/2) and cos (ωt/2), we obtain an algebraic system
of matrix equations of the form

−(2δ1s + δ21s)Y
′

n1 + ε0 diag
( M
Ms

) N0−1∑

m=0

[
(Anm1 + ε1Gnm11)Y ′

m1 + (Bnm1 + ε1Hnm11)Y ′′
m1

]
= 0,

−(2δ1s + δ21s)Y
′′

n1 + ε0 diag
( M
Ms

) N0−1∑

m=0

[
(Anm1 − ε1Gnm11)Y ′′

m1 − (Bnm1 − ε1Hnm11)Y ′
m1

]
= 0

(6.4)

(n = 0, 1, 2, . . . , N0 − 1),

where Gnm11 and Hnm11 are the matrices whose elements are determined in the following manner with allowance
for Eqs. (1.6) and (2.3):

gnml
su =

Rend∫

R0

∮

Ln(z)

Re (W̄11wmu1)ψs dσ dz, hnmll =

Rend∫

R0

∮

Ln(z)

Im (W̄11wmu1)ψs dσ dz.

The condition of existence of the solution of system (6.4) in the form (6.3) is the equation of the critical
frequencies, which is obtained in the case of a zero determinant of the matrix composed of the coefficients at the
unknown vectors Y ′

n1 and Y ′′
n1 in this system. In addition to the sought quantity δ1s, another unknown is the

Strouhal number k01 = ωb/|W01|, which affects the coefficients of aerodynamic forces. This number involves the
mean free-stream velocity W01 on the boundaries of stability of parametric vibrations. The value of this velocity is
of practical interest in solving problems of flutter of blade cascades. In accordance with the considerations presented
above, the values of k01 should be sought in the vicinity of k∗ = ωb/|W∗| from the condition of balance between
the forces exciting parametric vibrations of the blades and the forces of aerodynamic damping. The existence of a
value k01 > k∗ satisfying this condition would mean that the critical flutter velocity could decrease by the following
value under conditions (4.1) owing to free-stream nonuniformity:

|ΔW | = ωb(1/k∗ − 1/k01). (6.5)

7. Reduction of the Critical Flutter Velocity of the Cascade, Caused by Free-Stream Nonuni-
formity. As an example, let us consider a nonuniform flow of an ideal incompressible fluid through a plane uniform
cascade of blades with a period T = 2π/ω. Let the blades be able to perform vibrations with one degree of freedom,
with the eigenfrequency of these vibrations being ω01. Taking into account Eq. (6.3), we seek for the law of blade
vibrations on the boundary of stability of parametric vibrations in the form

zn = α01r exp j(ωt/2 + μrn), μr = 2πr/N0 (r = 0, 1, 2, . . . , N0 − 1). (7.1)
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Then, the expressions for the quantities y′n1r and y′′n1r introduced in Eq. (5.2) become

y′n1r = α01r cos (nμr), y′′n1r = −α01r sin (nμr). (7.2)

Substituting Eq. (7.2) into Eq. (6.4) and taking into account Eqs. (4.2), (7.1), and (6.2), we obtain
(
δ11r(2 + δ11r) − ε0

M

M1
Re (cr0 + dr

0)
)
α01r = 0,

(7.3)

Im (cr0 − dr
0)α01r = 0,

where cr0 and dr
0 are the complex coefficients of the generalized forces acting on the initial blade (n = 0) in the case

of simultaneous vibrations of the blades with identical amplitudes and a constant phase shift:

cr0 =
N0−1∑

m=0

c0m exp (jμrm), dr
0 = ε1

N0−1∑

m=0

d0m exp (jμrm),

c0m = a0m1
11 + jb0m1

11 are the aerodynamic influence coefficients of vibrations of the mth blade in the uniform
incoming flow on the magnitude of the generalized force acting on the initial blade; d0m = ε1(g0m1

11 + jh0m1
11 ) are

the corresponding coefficients due to flow nonuniformity.
For a nontrivial solution of the form (6.3) to exist, the coefficients at α01r in Eqs. (7.3) should be equal to

zero. In the first equation in (7.3), the zero coefficient at α01r yields the equation of the critical frequencies. In
the second equation, the zero coefficient means the condition of balance between the aerodynamic forces exciting
parametric vibrations of the blades and the forces of aerodynamic damping.

It should be noted that the equation of the critical frequencies is valid for all values of the Strouhal number,
which affects the aerodynamic influence coefficients. The Strouhal number that may cause the parametric resonance
to emerge is found from the following condition with allowance for Eq. (7.3):

Im (cr0 − dr
0) = 0. (7.4)

To determine k01, in accordance with Eq. (6.5), we introduce the quantity Δk = k01 − k∗ and find the approximate
dependences of cr0 and dr

0 on the Strouhal number in the vicinity of k∗ in the form

cr0 = cr01Δkr, dr
0 = ε1(dr

00 + dr
01Δkr).

Substituting these expressions into Eq. (7.4), we obtain

Δkr =
ε1d

r
00

c101 − ε1dr
01

. (7.5)

With allowance for Eqs. (6.5) and (7.5), the reduction of the critical flutter velocity due to flow nonuniformity can
be approximately determined by the formula

ηr =
|ΔWr|
|W∗| =

ε1d
r
00

k∗cr01 + ε1(dr
00 − k∗dr

01)
. (7.6)

Let us determine the critical flutter velocity of the cascade (its solidity τ = b/h = 0.5, angle of mounting
β = −30◦, and parameter of blade bending f̄ = 0.1) as a function of flow nonuniformity in the case of twisting
vibrations of the blades, using the aerodynamic influence coefficients calculated in [5]. In the case of blade vibrations
with the phase shift μr = π/2, with the most adverse initial data determining the phase of blade vibrations with
respect to the phase of the first harmonic of free-stream nonuniformity, we obtain the following values of the
coefficients in Eq. (7.6): k∗ = 0.265, cr01 = 2.4, dr

00 = 0.9, and dr
01 = −0.62. Substituting these values into Eq. (7.6),

we obtain

ηr =
0.9ε1

0.636 + 1.064ε1
.

Thus, we can conclude that the nonuniformity of the velocity field of the flow through the cascade can exert a
significant effect on the critical flutter velocity of the cascade blades.

This work was performed within the framework of the Integration Projects of the Siberian Division of the
Russian Academy of Sciences (Grant Nos. 5, 40, and 2.12).
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